Syllabus: ELEC 548 Neural Signal Processing (Fall 2013)

Instructor: Caleb Kemere <caleb.kemere@rice.edu>
Department of Electrical and Computer Engineering
Office: Duncan Hall 2026, BRC 736
Office Hours: Monday, Wednesday 9:00-10:00am (RMC Coffee House)

Course Grader: Ankit Sethi < as84@rice.edu>

Class Hours: Tuesday, Thursday 9:25-10:40
Location: BRC 284

Course website: The primary location for course information, assignments, and other resources is the course website. One particular feature are the forums - if you have specific questions about course content or assignments, please post them on the forum. As a corollary, you may find it useful to check the forums for answers as questions arise.
http://dsp.rice.edu/courses/elec548
https://owlspace-ccm.rice.edu/portal/site/BIOE-ELEC-548-001-F13

Course Description: The activity of a complex network of billions of interconnected neurons underlies our ability to sense, represent and store the details of experienced life, and enables us to interact with our environment and other organisms. Modern neuroscience techniques enable us to access this activity, and thus to begin to understand the processes whereby individual neurons work together to enable complex behaviors. In order to increase this understanding and to design biomedical systems that might therapeutically interact with neural circuits, advanced statistical signal processing and machine learning approaches are required. This class will cover a range of techniques and their application to basic neuroscience and neural interfaces.

This class will cover a range of techniques and their application to basic neuroscience and neural interfaces. Topics include an introduction to neurobiology and electrophysiology for engineers, point processes, dimensionality reduction, classification/clustering, spectral analysis, and genetic and optical tools for interrogating neural circuits. Neuroscience applications include modeling action potentials and firing rates, automated analysis of activity-dependent fluorescence imaging data, decoding, spike sorting, and field potential analysis. This course is open to students with no prior neurobiology coursework.

Objective: Students should learn the fundamentals of how the activity of neurons represents information within in the brain, how this activity can be monitored experimentally, and how to decode underlying information from the resulting neural data.

Outcome: Students completing the course should be able to:
1. Explain the fundamentals of neural information processing
2. Mathematically model the electrophysiological behavior of neurons
3. Extract information from neural data
Prerequisites: Basic circuits (ELEC 242 or equivalent), Linear algebra (Math 355 or equivalent), Probability (ELEC 303 or equivalent), Matlab will be used for many of the homework assignments so some familiarity with it will be useful.

Textbooks:
Pattern Recognition and Machine Learning by Christopher Bishop
Theoretical and Computational Neuroscience by Dayan and Abbott
Principles of Neural Science by Kandel, Schwartz, Jessel, Sieglebaum, and Hudspeth

Grading: Six to eight homework assignments (70%) and one final project (30%).
You can be one day (24 hours) late on two HW sets without any penalties. Otherwise there will be a 50% penalty on late HW assignments.

Honor code: You are encouraged to work with other students in ELEC 548 on homework problems. Each student, however, must turn in his or her own copy of the solutions. If homework is performed as a team, teammates should be noted on solutions.

Course Outline:
1. Introduction:
 1.1 – How is information represented and processing in the brain at the cellular and system level? How can we make sense of the experimental data collected from the brain?
2. Fundamental Neurobiology:
 2.1 – The brain, neurons, and glia
 2.2 – Ion channels, membrane potentials, and action potentials
 2.3 – Electrical and chemical synapses
3. Electrical recording and stimulation technology:
 3.1 – Local field potentials and single unit recording
4. Modeling spike trains
 4.1 - Tuning curves / PSTH
 4.2 - Point processes: Poisson
5. Basic probabilistic machine learning
 5.1 - Priors / Likelihood function
 5.2 - Maximum likelihood
6. Classification
 6.1 - Linear discriminants
 6.2 - Discrete decoding
7. Clustering / Mixture models
 7.1 - PCA
 7.2 - Expectation maximization
 7.3 - Spike sorting
8. Continuous Decoding
 8.1 - Linear filter
 8.2 - Kalman filter
9. Latent variable models
 9.1 Hidden Markov models for decoding
 9.2 Spike sorting with Gaussian mixtures
 9.3 Particle filters
10. Spectral estimation (LFP/EEG)
10.1 STFT
10.2 Wavelets and Multitaper techniques

Absence Policies: Class attendance is not required, however students will be responsible for the material covered during lecture. The slides presented during class will be available on the course website, and it is the responsibility of the student who missed class to work with other students to review any material that is not represented in the online documents.

Students with Disabilities: Any student with a documented disability seeking academic adjustments or accommodations is requested to speak with one of the course instructors during the first two weeks of class. All discussions will remain as confidential as possible. Students with disabilities will need to contact Disability Support Services in the Allen Center.

Information contained in this syllabus, other than the absence policies, may be subject to change with reasonable advance notice, as deemed appropriate by the instructors.